Revisiting DNA damage repair, p53-mediated apoptosis and cisplatin sensitivity in germ cell tumors.
نویسندگان
چکیده
Testicular germ cell tumors (TGCTs), ie, seminomas and nonseminomas, account for 1% to 3% of all neoplasms in men. They are the most common cancer in young white males and are unique in their responsiveness to cisplatin-based chemotherapy. For this reason, TGCTs are considered a model for curative disease. However, up to now, the molecular mechanisms behind this exceptional responsiveness to DNA-damaging agents have remained unclear. A hypersensitive apoptotic response, as well as a reduction in the proficiency to repair cisplatin-induced DNA damage might account for this behavior. In this review, building on recent findings of p53-induced apoptosis and DNA-repair mechanisms in TGCTs, we will discuss the molecular bases that drive tumor sensitivity to cisplatin, emphasizing the new therapeutic approaches proposed to eventually constrain tumor recurrence, and target TGCTs which are unresponsive to standard therapies.
منابع مشابه
Towards an understanding of the biological basis of response to cisplatin-based chemotherapy in germ-cell tumors.
Chemotherapy is far more successful in young male patients with germ-cell tumors than in adults suffering from almost any other solid tumor. Various attempts have been made to understand the sensitivity of these tumors towards cisplatin-based chemotherapy; however, to date no explanation has been generally accepted. Recent data underline the need to seek further explanations, other than the pre...
متن کاملMechanisms of Cisplatin-Induced Apoptosis and of Cisplatin Sensitivity: Potential of BIN1 to Act as a Potent Predictor of Cisplatin Sensitivity in Gastric Cancer Treatment
Cisplatin is the most important and efficacious chemotherapeutic agent for the treatment of advanced gastric cancer. Cisplatin forms inter- and intrastrand crosslinked DNA adducts and its cytotoxicity is mediated by propagation of DNA damage recognition signals to downstream pathways involving ATR, p53, p73, and mitogen-activated protein kinases, ultimately resulting in apoptosis. Cisplatin res...
متن کاملThe role of p53 in DNA damage-mediated cytotoxicity overrides its ability to regulate nucleotide excision repair in human fibroblasts.
The p53 tumour suppressor protein plays a pivotal role in the response of mammalian cells to DNA damage. In addition to its regulatory role in cell cycle progression, p53 regulates apoptosis and can therefore influence cellular survival in response to DNA damage. More recent work has revealed that p53 is also involved in the nucleotide excision repair (NER) of structurally diverse types of DNA ...
متن کاملRepair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity.
Cisplatin is the most commonly used anticancer drug for the treatment of testicular germ cell tumors (TGCTs). The hypersensitivity of TGCTs to cisplatin is a subject of widespread interest. Here, we show that high-mobility group box protein 4 (HMGB4), a protein preferentially expressed in testes, uniquely blocks excision repair of cisplatin-DNA adducts, 1,2-intrastrand cross-links, to potentiat...
متن کاملp53 Hypersensitivity Is the Predominant Mechanism of the Unique Responsiveness of Testicular Germ Cell Tumor (TGCT) Cells to Cisplatin
Consistent with the excellent clinical results in testicular germ cell tumors (TGCT), most cell lines derived from this cancer show an exquisite sensitivity to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to apoptosis plays a central role in this hypersensitive phenotype. The role of the tumor suppressor p53 in this response, however, remains controversial. Here we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 57 2-4 شماره
صفحات -
تاریخ انتشار 2013